
Cosmobyte 22-23
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL EDUCATION SOCIETY

J.N.N College of Engineering,
Shimoga-577204

M E S S A G E F R O M H O D

V I S I O N M I S S I O N

To be one of the pre-eminent departments
to provide technical and knowledge based
education, utilizing the potential of
Computer science and Engineering to
meet the ever changing needs of society
and industry.

Mold the students to meet the
emerging challenges of industry and
society.
Emphasizing on research.
Effective industry interaction for the
development of state of the art
technological infrastructure and
faculty component.

Dr. Poornima K.M

Dear Students Greetings,
I feel proud and honored to lead such an active and energetic department.
The major strength of the department is a team of well qualified experienced
and dedicated faculty who are continuously working and supporting the
students for their excellence in academics, sports and cultural activities.

I am very happy that, our CS&E department is releasing annual magazine COSMOBYTE. This magazine
gives an insight into the range and scope of the imagination and creativity of our students My heartfelt
congratulations to the entire team for their efforts in bringing out the department magazine.
No one reaches a peak of the hill just by looking at one who has determination and stamina and to go
through the total toil will reach the pinnacle. My dear students I wish all the very best for your future
endeavors.

E D I T O R I A L B O A R D

C H E I F E D I T O R S
Ms.Sinchana S Noolee,8th Sem

Ms. Shubha M.L,8th Sem

S U B E D I T O R S
Mr.Nandish D,6th Sem

Ms. Pooja B,6th Sem

V E R S E A N D V O I C E S

I NEVER KNOW WHY,
WHY AM I BEING ME..

LET THE TIME FREEZE
FOR ME TO CHERISH YOU

SMILE IN YOUR EYES
STEALS MY SILENCE

UNSEEN VOICE OF YOURS
SEIZE MY WORDS

THOSE HEARTFELT LINES
WHICH REMAIN UNSAID

THOSE CRAZY THOUGHTS
TO BE AROUND YOU
THE WAY I FEEL YOU
I SWEAR NO ONE CAN

GIVE ME A MOMENT

I'M COMPLETELY IN YOU
JUST LOOK AT ME

FOR ONCE AND I'M DONE

NOTHING ,JUST A WISH
I'VE BEEN WAITING FOR

JUST SAY YES
AND I'LL NEVER REGRET

- S H U B H A M L , 8 B

PEOPLE ASKS WHY SHE LOVES
SUNSET
IF THEY MEAN THAT EVERYTHING
HAS THEIR END.

BUT THE COLOR OF THE SUN.
IS WHAT MAKES HER HAPPY.

IT REMINDS HER
THAT WHATEVER HAPPENED
THE ENTIRE DAY.
YOU CAN STILL GET
A BEAUTIFUL THING
AT THE END

- P O O J A R , 6 B

ಮುಸ�ಂ� ಮುಸು�ನ�
ಏ�ಾಂ� ಮನವ �ೂತು�
�ೂರ�ನು ಎ���ೂೕ..

�ಾಡು�ಹ �ನ� �ನಪ �ಪದ��
�ೂೕ�ಹುದು ಮನ �ೌನದ��

ಆಡುವ �ಾ�ರಲು ಹಲವ�
�ಾಣುವ ಕಂಗಳ� �ೂೕ�ಹವ�
ದೂರದ �ಾ� ಸ�ೆ�ರಲು
�ನ�ಯ �ನ� �ೂ��ಹುದು

�ೕಸುವ �ಾ� ಅ��ರಲು
ಬಯ�� ���ೕ �ೕರಲು
ಕತ��ಯ �ೕಪ �ೂ��ರಲು

ಭರವ�ಯ �ಳಕು ಮೂ�ಹುದು

- S H U B H A M L , 8 B

�ದಲಸಲ ��ಯದ ಕನಸು �ೕನು
ಪ�ೕ ಪ�ೕ �ಾಡುವ ಕಲ��ಯು �ೕನು

�ಘO�ನಲೂ� ಇಲ�ದ ಪದಗಳ ಅಥ� �ೕನು
ನನ� �ಗ�ೕ�ನು�ವ �ಾ�ಥ� �ೕನು

ಪ�ನಃ ಕ�ಯ�ೕ�ಾದ �ಾಗು�ತವ� �ೕನು
 �ೌಂದಯ� �ೕವ�ಯ ಅಂಶ �ೕನು
���ಯಲೂ� �ಾಡುವ ಕೂ�� �ೕನು
ಮುದು� ಮು�ಾ�ದ ಕೃ�ಯು �ೕನು

�ಾಳ� ಇಂದ ���ದ ಆಕೃ�ಯು �ೕನು
ಮನ��ನ �ಾವ �ೕನು

ಹೃದಯದ ಬ�ತವ� �ೕನು
ಈ ಕ��ಯ ಬ��ರುವ�ದು ಕೂಡ
�ಾನಲ�,ನ�ೂ�ಳ�ನ �ೕನು

- M A N J U S H V , 8 A

ಮು��ತು ಪದ� ಪ�ವ�,
�ೕ�� �ಾ�� �ಾನು-ಇಂ��ಯ�ಂ� �ೕ�ೂ�ಳದ �ೕ�ಾ�,,
ಅಂತು ಇಂತು �ೕ��,
ಏ�ೕನು �ೕ�� �ಾಡ�ೕ,,
��� �ಾ�� ಅ�� ಫ�� ಇಯ�,
ಆ�ೕ� �ೂ�ೂೕ�ಾ �ೕಳ�� �ಾ�� ನೂ� ಇಯ�,,
��ಶ�� ಇಲ�� �ಾ�ಂ� ಎಂ�� ಆ�� �ಾವ�,
���� ಅನು�ಸು� ಇಂ��ಯ�ಂ� �ಾವ�,,
�ೂೕ�ಾ� �ೂೕ�ಾ� ಜೂ�ಯ� �ೕ�ಯ� ಅನುಬಂಧ,
ಮನ��� �ೕ�ತು ಇಂ��ಯ�ಂ�ನ �ಾ� ಗಂಧ,,
�ೕ�ದು� �ೂ�ಾ��ಲ�,
ಓ�ದು� �ೂ�ಾ��ಲ�,
ಇ�� �ೕಗ ಈ ಪಯಣ ಮು��ೕ �ೂೕ�ತ�ಲ�,,

- V I D Y A S H R E E B S , 8 B

�ದಲ �ಾ� �ೌ��ಾ�ರು�
�ನ��ೕ ಆ�ೂೕಚ�ಗಳ ಸ�ಾ�
ಗು�ಯು �ೕ� ಆ�ರು�

ಬಂ�ರು� �ನ� ಅಪ�� �ೂೕ�

ಶುದ� ಕನ�ನ�� �ದು� ಮುಳ��ರು�
�ನ� ಕಲ��ಗಳ ಮನ��� ತೂ�
ಕಷ��ಾದರು ಮ�� �ೕಳ��ರು�
ಆಗು�ಯ ನನ� �ಾಜಕು�ಾ�

ಇದ� ಹೃದಯವ ಹ�ಾಜು �ಾ�ರು� �ೕ�ಾಗು�ಯ �ಾ��ಾ�

ಖ�ತ�ಾದ� ಉ�ತ �ೕಡು�ನು
ಎ� ಬ�ತಗಳ ಲಹ�

�ನ���� ಬಂ��ಾ�ರು�

�ೕ� ��ಸ�ೕಕು ದ��ೂೕ� ಮಂ�ಯೂ� �ೕಳ��ರು�
ಆಗು�ಯ ನನ� �ಾಜಕು�ಾ�

- M A N J U S H V , 8 A

IT IS ONE OF THE MOST AWAITED GEMS
SPLASHES AT THE END OF EVEN SEMS

HAS ITS GLORY WIDE SPREAD
IT’S LEGACY CAN’T GO UNSAID

GLUES TOGETHER EVERYONE
WITH EACH’S DELIGHT OVERRUN

WHOLE LONG SEM WITH VARIOUS EVENTS
ALL EXECUTED WITH 100% CONFIDENCE

FILLED WITH JOY, FUN AND MEMORIES
AND HAS COVERED ALMOST ALL TRAJECTORIES

YOU ALL GUESSED IT RIGHT
WITH ALL MIGHT

IT IS THE UNBEATABLE COSMOS
WHICH ALWAYS CARRIES TREMENDOUS MOTTOS.

- P A R V A T H I S A L E R A , 8 B

ಅಮ�
ಅ�ಾ� ನನ� ಅ�ಾ�
ಶ��ಸುವಳ� ಹಗಲು �ಾ���ನ��
ಉ��ಸುವಳ� ��ೕ�ಯ �ಾತುಗ�ಂದ
�ನ� ��ೕ� ಆ �ೕಸರನ ಅಂ�ನಂ�
ಎಂ�ಗೂ �ೂ�ಯು�ರುವ�ದು
ಆ ರ�ಯು ತನ� �ೕಮವ ಮ��ಹನು
ಅಮ�ನ �ಾ�
ಅ�ಾ� ನನ� ಅ�ಾ�.

ಆ ರ�
�ಾ�ನ�� �ನುಗುವ �ೕನು ದೂರ �ಾತ�
�ನ� �ನ�ನ ಅಂಗಳದ�� �ಾನು �ಾತ�
ಮೂಂ�ಾ� ಇರುವ �ೕನು ಸಂ� �ಗ�ೂ��
ಮುಸ�ಂ� ಇ�� �ಾನು �ನ� �ನಪ��ೕ.

- Y A S H A S W I N I I K , 6 B

- I N C H A R A , 6 A (F R O M
C O L L E C T I O N)

"MY AURORA"

IN A REALM WHERE DREAMS TAKE FLIGHT,
SPLASHED IN COLORS WITH BRIGHT ETHEREAL
LIGHT,
THERE EXISTS A CELESTIAL PRESENCE,
A MASTERPIECE WOVEN, BE MY AURORA.

A GRACEFUL SIGHT, AND A GENTLE MUSE,
WITH SHIMMERING OF ALL COSMIC HUES,
MY AURORA'S PRESENCE, A CELESTIAL BODY,
HEARTS AWAKENING WORLD TO A HEAVENLY
BLISS.

THE CANVAS, THE ART'S FULLY IMMENSE,
A DAZZLING FEATURE SHINNING, I CONDENSE
A SYMPHONY OF SHADES, RADIANT AND RARE,
PAINTING THE HEAVENS WITH TENDER AND CARE

FROM EMERALD GREEN TO SAPPHIRE BLUE,
THOSE STROKES PAINT A MAJESTIC VIEW,
RIBBONS OF GOLD TWISTED ACROSS THE SKY,
THE CONSTELLATIONS HUM A SONG BY AND BY

- M S H A N O N
A K A N S H A , 6 B

J U S T F O R F U N

THERE ARE 10 TYPES OF PEOPLE
IN THIS WORLD, ONE WHO CAN
UNDERSTAND BINARY AND
OTHER WHO DON'T.
ROSES ARE RED VIOLETS ARE
BLUE UNEXPECTED { ON LINE 52
MISTAKES AREN'T MISTAKES
UNLESS YOU KNOW CONTROL+Z

- C H A I T R A R , 6 A

- S H R A V Y A D G O W D A , 6 B

_ P O O J A B , 6 A

- N I T H Y A K G , 6 A

- S Y E D A Q E E L A H M E D , 6 B

- R U K M I N I S , 6 B

T E C H I N S I G H T S : D E M Y S T I F Y I N G
C O M P L E X C O N C E P T S

TITLE: HARNESSING THE POWER OF SANSKRIT: EXPLORING SANSKRIT
AS A PROGRAMMING LANGUAGE

Introduction:
Sanskrit, the ancient language of india, is known for its precision, rich vocabulary, and grammatical
structure. While it has predominantly been used in the realms of literature, philosophy, and
spirituality, there is an emerging interest in utilizing sanskrit as a programming language. This article
delves into the potential of sanskrit as a programming language, exploring its unique features and
providing insights into its practical applications.

1. The roots of sanskrit as a programming language:
Sanskrit's grammatical structure aligns remarkably well with the syntax and rules of modern
Programming languages. Its precise and logical nature makes it an intriguing candidate for coding
Purposes. By leveraging the linguistic strengths of sanskrit, programmers can potentially develop
Robust and expressive software systems.

2. Simplicity and readability:
Sanskrit's straightforward grammar and unambiguous syntax contribute to the simplicity and
Readability of code written in this language. Its well-defined rules and consistent structure enhance
Code maintainability and reduce the chances of errors. The use of sanskrit as a programming
Language could foster codebases that are easy to understand, debug, and collaborate on.

3. Expressive power:
Sanskrit's extensive vocabulary allows programmers to articulate complex ideas and concepts with
Conciseness and clarity. The language's wide range of linguistic features, such as compound words,
Verb conjugations, and noun declensions, can be harnessed to create expressive code that captures
The intricacies of algorithms and problem-solving approaches.

4. Integration with Indian Heritage and Culture:
By utilizing Sanskrit as a programming language, developers can bridge the gap between technology
and India's rich cultural heritage. This approach fosters a sense of connection and promotes the
preservation and dissemination of an ancient language in the modern digital world.

5. Practical Applications:
a. Natural Language Processing (NLP): Sanskrit's grammatical structure can enhance the accuracy
and efficiency of natural language processing algorithms. NLP systems can leverage Sanskrit's rules
to perform more nuanced semantic analysis, improve machine translation, and refine speech
recognition capabilities.

b. Artificial Intelligence (AI) and Machine Learning (ML): Sanskrit's expressiveness and precision can
be leveraged to develop sophisticated AI and ML algorithms. The language's ability to articulate
complex mathematical and logical constructs can contribute to the development of advanced
models and algorithms.
(Source: [2] - "Sanskrit for Artificial Intelligence")

c. Computational Linguistics: Sanskrit's well-defined grammar and extensive lexicon can aid in the
development of computational linguistics applications. By incorporating Sanskrit into language
processing systems, researchers can improve text analysis, semantic understanding, and machine
comprehension.
(Source: [3] - "Computational Linguistics using Sanskrit")

Conclusion:

The utilization of Sanskrit as a programming language opens up exciting possibilities for software
development. With its inherent precision, expressive power, and integration with India's cultural
heritage, Sanskrit can contribute to advancements in various fields, such as NLP, AI, and
computational linguistics. Exploring Sanskrit as a programming language is not only a technical
endeavor but also an opportunity to preserve and promote the linguistic and cultural wealth of
ancient India.

- N A N D I S H D , 6 A

TITLE: PĀṆINI'S AṢṬĀDHYĀYĪ

Pāṇini's Aṣṭādhyāyī, often referred to as the "Aṣṭādhyāyī," is an ancient Sanskrit treatise on grammar
and linguistics. Written by the Indian grammarian Pāṇini in the 4th century BCE, it is considered one of
the most influential works in the field of linguistics. The Aṣṭādhyāyī lays down comprehensive rules and
principles for the structure, formation, and interpretation of Sanskrit sentences. The insights and
techniques found in this seminal work can be valuable in building Sanskrit as a programming language.
Here are some aspects of the Aṣṭādhyāyī that can be helpful:

 1. Sūtras and Formal Rules: The Aṣṭādhyāyī is composed of a series of concise rules, known as sūtras,
which serve as the foundation for generating and understanding Sanskrit sentences. These sūtras exhibit
a remarkable level of brevity and encapsulate complex linguistic principles. Similarly, in programming
languages, concise and formal rules can contribute to the clarity and efficiency of code.

2. Hierarchical Structure: Pāṇini's work follows a hierarchical structure, organizing linguistic elements
into a system of rules, classes, and categories. This systematic approach allows for a logical organization
of linguistic constructs and can inspire the development of hierarchical structures in the syntax and
semantics of Sanskrit-based programming languages.

3. Generative Grammar: Pāṇini's approach to grammar is generative in nature, as he provides rules
for the generation of valid sentences and for the analysis of complex linguistic structures. Similarly,
programming languages utilize generative grammars to define the syntax and semantics of their
constructs, enabling the generation and interpretation of code.

4. Formalism and Precision: The Aṣṭādhyāyī employs a formal and precise framework to describe
the Sanskrit language. It defines rules for morphological and syntactical analysis, allowing for
unambiguous interpretation of sentences. This emphasis on precision and formalism can be adapted
to design programming languages that prioritize clarity, predictability, and robustness.

5. Computational Efficiency: Pāṇini's grammatical rules aim to capture the most economical and
efficient way to express linguistic elements. This consideration of computational efficiency can be
applied to programming language design, ensuring that code execution is optimized and that
computational resources are utilized effectively.

6. Rule-based Systems: The Aṣṭādhyāyī provides a vast set of rules that govern the formation and
interpretation of Sanskrit sentences. These rules can serve as a foundation for developing rule-based
systems in programming languages, allowing for the specification of complex behaviors and logical
constraints.

Conclusion

By studying and extracting insights from Pāṇini's Aṣṭādhyāyī, developers interested in building
Sanskrit as a programming language can draw inspiration from its formalism, precision, hierarchical
structure, generative grammar, and computational efficiency. Incorporating these principles can
contribute to the development of a powerful and expressive programming language that embraces
the inherent strengths of Sanskrit.

- N A N D I S H D , 6 A

TITLE: THE FUTURE OF VIRTUAL REALITY

Introduction:

Virtual Reality (VR) has made significant strides since its inception, transforming from a niche
technology into a mainstream phenomenon. With the advent of powerful computing devices and
advancements in graphics, VR has gained traction across various industries, from entertainment
and gaming to healthcare and education. As we peer into the future, it becomes clear that virtual
reality is poised to revolutionize the way we interact, learn, and experience the world around us.

1. Immersive Entertainment: In the future, virtual reality will revolutionize the entertainment
industry, taking us beyond the confines of traditional screens. Imagine being fully immersed in a
virtual world, where you can explore fantastical realms, interact with lifelike characters, and
engage in immersive storytelling. Moreover, VR will extend beyond gaming to encompass virtual
concerts, movies, and sporting events, allowing people to be present in the virtual arena and
connect with others from around the globe

2. Enhanced Education and Training: Virtual reality holds tremendous potential for education
and training. Imagine students being able to step into historical events, explore the human body
from within, or travel to distant planets for science lessons. VR will provide a dynamic and
engaging platform for immersive learning, allowing students to visualize complex concepts and
interact with virtual objects and environments. Similarly, VR will revolutionize training programs
by creating realistic simulations for industries such as healthcare, aviation, and military, enabling
trainees to gain hands-on experience in a safe and controlled environment.

3. Virtual Collaboration and Telepresence: The future of work will see a paradigm shift with the
integration of virtual reality. Virtual collaboration platforms will enable teams spread across the
globe to work together in shared virtual spaces, fostering creativity, productivity, and a sense of
presence. Meetings will no longer be confined to video calls; instead, colleagues will interact as
avatars, sharing and manipulating 3D models and data. Additionally, VR will transform remote
work by providing a sense of physical presence, reducing isolation, and enhancing
communication.

 4. Healthcare and Therapy: Virtual reality has the potential to revolutionize healthcare by
enhancing diagnostics, treatment, and therapy. Surgeons can practice complex procedures in a
virtual environment, reducing the risk to patients. VR can also aid in pain management by
immersing patients in relaxing or distracting virtual environments. Furthermore, therapists can
use VR to treat various mental health conditions, such as phobias, PTSD, and anxiety disorders,
by creating controlled and immersive exposure therapy scenarios.

5. Social Impact and Empathy: Virtual reality has the power to evoke empathy and create social
impact. By enabling users to step into someone else's shoes and experience different perspectives,
VR can foster empathy and understanding for diverse cultures, social issues, and marginalized
communities. VR experiences can raise awareness about global challenges, such as climate change
and poverty, and inspire individuals to take action.

Conclusion:

The future of virtual reality holds immense potential to reshape our lives and unlock new
dimensions of experience. From entertainment and education to healthcare and social impact, VR
will permeate various aspects of our lives, offering immersive and transformative experiences. As
technology continues to advance, we can look forward to a future where virtual reality becomes
an integral part of our everyday lives, enriching our experiences and connecting us in ways we
never thought possible. The journey has just begun, and the possibilities are limitless

- H A J I R A K O U S E R 6 T H A

TITLE: WHAT BRAIN-COMPUTER INTERFACE COULD MEAN FOR
THE FUTURE WORK

Brain Computer Interfaces for Improving the Quality of Life of Older Adults and Elderly Patients
Imagine if you could prepare your next presentation using only your thoughts. These scenarios
might soon become a reality thanks to the development of braincomputer interfaces (BCIs). To put
it in the simplest terms, think of a BCI as a bridge between your brain and an external device. As of
today, we mostly rely on electroencephalography (EEG) — a collection of methods for monitoring
the electrical activity of the brain — to do this. But, that’s changing. By leveraging multiple sensors
and complex algorithms, it’s now becoming possible to analyze brain signals and extract relevant
brain patterns.

 Brain activity can then be recorded by a non-invasive device — no surgical intervention needed. In
fact, the majority of existing and mainstream BCIs are noninvasive, such as wearable headbands
and earbuds. The development of BCI technology was initially focused on helping paralyzed
people control assistive devices using their thoughts. But new use cases are being identified all the
time. For example, BCIs can now be used as a neurofeedback training tool to improve cognitive
performance. A Toronto-based startup called “Muse” has developed a sensing headband that gives
real-time information about what’s going on in your brain. Researchers are also experimenting
with “passthoughts” as an alternative to passwords. Soon, we might log into our various devices
and platforms using our thoughts. When we perform mental tasks like picturing a shape or singing
a song in our heads, our brains generate unique neuronal electrical signals.

A billion people could mentally hum the same song and no two brain-wave patterns generated by
that task would be alike. An electroencephalograph (EEG) would read those brain waves using
noninvasive electrodes that record the signals. The unique patterns can be used like a password or
biometric identification.

- B H A V A N A R M , 6 A

TITLE: IS TIME TRAVEL POSSIBLE?

Although many people are fascinated by the idea of changing the past or seeing the future before
it's due, no person has ever demonstrated the kind of back-and-forth time travel seen in science
fiction or proposed a method of sending a person through significant periods of time that wouldn't
destroy them on the way. And, as physicist Stephen Hawking pointed out in his book "Black
Holes and Baby Universes" (Bantam, 1994), "The best evidence we have that time travel is not
possible, and never will be, is that we have not been invaded by hordes of tourists from the
future."

Dueling theories

In 1905, Albert Einstein published the first part of his relativity theory, known as special relativity.
In it, space and time are malleable; measurements of both space and time depend on the relative
speed of the person doing the measuring.

“It is absolutely provable in special relativity that the astronaut who makes the journey, if they
travel at very nearly the speed of light, will be much younger than their twin when they come
back,” says Janna Levin, a physicist at Barnard College in New York. Interestingly, time
appears to pass just as it always does for both twins; it’s only when they’re reunited that the
difference reveals itself Then, in 1915, Einstein came up with the second part of his theory,
known as general relativity. General relativity renders gravity in a new light. With general
relativity, things really start to get interesting. In this theory, a massive object warps or distorts
space and time. Perhaps you’ve seen diagrams or videos comparing this to the way a ball
distorts a rubber sheet. One result is that, just as travelling at a high speed affects the rate at
which time passes, simply being near a really heavy object—like a black hole—will affect one’s
experience of time.

Can we use time travel in everyday life?

We can't use a time machine to travel hundreds of years into the past or future. That kind of
time travel only happens in books and movies. But the math of time travel does affect the
things we use every day. GPS satellites orbit around Earth very quickly at about 8,700 miles
(14,000 kilometers) per hour. This slows down GPS satellite clocks by a small fraction of a
second. However, the satellites are also orbiting Earth about 12,550 miles (20,200 km) above
the surface. This actually speeds up GPS satellite clocks by a slighter larger fraction of a
second.

- B H A V A N R M , 6 A

TITLE: POWER OF POSITIVE THINKING

For living a wonderful life positive attitude is very much important ,as we face various different
situations in life being calm, being motivated ,leading joyful and cheerful life positive attitude is
important. Positive thinking doesn't mean that you ignore life's less pleasant situations. Positive
thinking just means that you approach unpleasantness in a more positive and productive way.
You think the best is going to happen, not the worst. You can learn to turn negative thinking into
positive thinking. The process is simple, but it does take time and practice — you're creating a
new habit, after all. Following are some ways to think and behave in a more positive and
optimistic way: • Identify areas to change. If you want to become more optimistic and engage in
more positive thinking, first identify areas of your life that you usually think negatively about,
whether it's work, your daily commute, life changes or a relationship.

You can start small by focusing on one area to approach in a more positive way. Think of a
positive thought to manage your stress instead of a negative one.

• Check yourself. Periodically during the day, stop and evaluate what you're thinking. If you find
that your thoughts are mainly negative, try to find a way to put a positive spin on them.
• Be open to humor. Give yourself permission to smile or laugh, especially during difficult times.
Seek humor in everyday happenings. When you can laugh at life, you feel less stressed.

• Follow a healthy lifestyle. Aim to exercise for about 30 minutes on most days of the week. You can
also break it up into 5- or 10-minute chunks of time during the day. Exercise can positively affect
mood and reduce stress.
• Surround yourself with positive people. Make sure those in your life are positive, supportive people
you can depend on to give helpful advice and feedback. Negative people may increase your stress
level and make you doubt your ability to manage stress in healthy ways.
• Practice positive self-talk. Start by following one simple rule: Don't say anything to yourself that
you wouldn't say to anyone else. Be gentle and encouraging with yourself. If a negative thought
enters your mind, evaluate it rationally and respond with affirmations of what is good about you.
Think about things you're thankful for in your life.

Practicing positive thinking every day

If you tend to have a negative outlook, don't expect to become an optimist overnight. But with
practice, eventually your self-talk will contain less self-criticism and more self-acceptance. You may
also become less critical of the world around you. When your state of mind is generally optimistic,
you're better able to handle everyday stress in a more constructive way. That ability may contribute
to the widely observed health benefits of positive thinking. Along with positive thinking we have to
concentrate on what we are seeing, what we are hearing and what we are taking because, there is
saying that “THE MIND IS EVERY THING. WHAT YOU THINK YOU BECOME”, what we
see, hear and talk that we become, every act we are doing will be effecting our character, The way we
are. Life is not so hard to live ,but if we no how to tackle the situation and by practicing the art of
living we can absolutely lead the joyful and a wonderful life.

“CHANGE YOUR THINKING, CHANGE YOUR LIFE”

- L I K H I T H A R 6 T H A

Title: The Future-Proof Nature of Java: Building on a Strong Foundation

Introduction:

In the fast-paced world of technology, staying relevant and future-proofing programming
languages is a top priority for developers and organizations. Java, a widely used and mature
programming language, has consistently proven its ability to adapt, evolve, and remain future-
proof. In this article, we will explore the reasons behind Java’s enduring popularity, its strong
foundations, and the measures taken by the Java community to ensure its continued relevance in
the ever-changing technological landscape.

1. Platform Independence and Compatibility:
Java’s “Write Once, Run Anywhere” principle has been one of its greatest strengths. Java
programs are compiled into bytecode, which can run on any platform with a Java Virtual
Machine (JVM). This cross-platform compatibility allows developers to write code once and
deploy it across a wide range of devices, from desktop computers to smartphones, embedded
systems, and the cloud. As technology continues to advance, Java’s platform independence
ensures its relevance in a world of diverse computing environments.

2. Continuous Evolution:
Java’s evolution is driven by its strong community and the stewardship of Oracle, the
organization responsible for its development. Regular updates and releases introduce new
features, performance enhancements, and security improvements. Recent versions, such as Java
8, 9, 10, 11, and beyond, have brought significant enhancements, including lambda expressions,
modularization (Project Jigsaw), and improved garbage collection. This commitment to
continuous improvement ensures that Java remains up-to-date with emerging trends and
technological advancements.

 3. Robust Ecosystem and Libraries:
Java boasts a vast ecosystem of libraries, frameworks, and tools that empower developers to
build sophisticated and scalable applications efficiently. The Java Development Kit (JDK)
provides an extensive set of APIs for various tasks, including networking, database
connectivity, user interfaces, and more. Popular frameworks like Spring, Hibernate, and
JavaFX simplify application development and integrate seamlessly with modern architectural
patterns. This rich ecosystem enables Java developers to leverage existing resources and
accelerate the development process, irrespective of the industry they are working in.

 4. Backward Compatibility:
One of Java’s core principles is backward compatibility, ensuring that applications developed
in earlier versions of Java continue to work seamlessly on newer versions. This commitment to
maintaining backward compatibility is vital for businesses that rely on Java for critical systems.
It allows organizations to adopt newer Java versions gradually, without the need for a
complete rewrite of existing codebases, thereby reducing costs and minimizing disruption.

 5. Industry Adoption and Job Market:
Java’s widespread adoption across industries has contributed significantly to its future-proof
nature. It is the backbone of numerous enterprise systems, banking applications, e-commerce
platforms, and large-scale projects. The demand for Java developers remains consistently high,
with an extensive job market offering diverse career opportunities. This popularity and
industry support provide a solid foundation for Java’s long-term viability.

Conclusion:

Java’s future-proof nature stems from its platform independence, continuous evolution, robust
ecosystem, backward compatibility, and widespread industry adoption. Its ability to adapt to
changing technology trends and its thriving community ensure that Java will remain a
prominent programming language for years to come. As developers embrace newer Java
versions and harness its extensive libraries and frameworks, Java continues to demonstrate its
strength in building scalable, reliable, and secure software solutions.

- J U N A I D H F A R D E E N , 6 A

Title: How to Fight Climate Change as a Software Engineer

Software has an impact on climate change and we as software engineers can make a difference. By
keeping the created carbon emissions in mind and doing what is possible to reduce carbon
emissions caused by software, we can contribute to the fight against climate change.
Waiting for data centers to fully run on renewable energy is not enough and will take too long. We
need to decrease the amount of energy that software consumes, in addition to increasing the
amount of renewable energy that powers the data centers in order to speed up this transition.
Huge amounts of energy are wasted every day by software blocking space and consuming energy
at data centers without being used most of the time. We need to consequently scale software down
to zero and remove unused deployments from data centers.
It is worth taking a look at the actual resource consumption of software; efforts to reduce this
resource consumption pay off in terms of lower energy and hardware consumption. The impact
looks small initially, but scaling effects turn it into significant numbers.
Take the carbon intensity into account when choosing a data center or public cloud region - the
carbon emissions caused by a data center can vary a lot when running the exact same workload.
Choosing a region with lower carbon intensity helps quite a bit to run your workload with less
carbon emissions.
We need to reduce and eliminate greenhouse gas emissions in order to stop climate change. There
is no way around this. But what is the role that software plays here? And what can we - as
software engineers - do about this? Let’s take a look under the hood to uncover the relationship
between greenhouse gas emissions and software, learn about the impact that we can have, and
identify concrete ways to reduce those emissions on a day-to-day basis when creating and running
software.
Software is everywhere. We use software all the time. There are probably millions of lines of
software running in your pocket, on your smartphone, all the time. There are millions of lines of
software running on devices all around us, and there are trillions of lines of software running in
data centers around the globe that we use every day, every hour. You can’t make a phone call
anymore without huge amounts of software being involved, you can’t buy your groceries at the
store or use your bank account without software being involved.

If you look behind the scenes of all this software, you will find huge amounts of greenhouse gas
emissions - the driving factor of climate change - being produced and emitted to the atmosphere in
this process, caused by a variety of activities around software. The hardware that is used to run
the software needs to be produced, the data center that runs the software needs to be powered
with energy, needs to be cooled, data needs to be transferred over the network, and so on. The
more you look into the details of software, the more aspects you identify that cause greenhouse
gas emissions - directly or indirectly.
As an example, we can look into data centers that run huge amounts of software every second. We
know that the total energy consumption of data centers around the globe is significant - and will
increase even further in the future. We are talking here about something in the range of maybe
10% of the energy produced on the entire planet being consumed by data centers in the near
future. This is huge. And it is only one of many aspects here.
Energy is a key factor

Energy production is still a major driver of greenhouse gas emissions. Even if you hear slogans of
“we use 100% renewable energy”, this usually doesn’t mean that your data center really runs on
renewable energy all the time. It typically means that the provider buys (or produces) renewable
energy in the same amount as the data center uses over a period of time.
Unfortunately the energy consumption of a data center doesn’t align with the energy production
from renewable sources all the time. Sometimes more renewable energy is being produced than
consumed by the data center, but sometimes the opposite happens: the data center needs more
energy than is currently available from renewable sources. In those situations, the data center
depends on the energy grid to fill in the gaps. And consuming energy from the grid means to
depend on the energy mix that is available on the grid at that moment. The exact mix heavily
depends on the country, the location within the country, and the exact time. But in almost all
cases this mix includes energy being produced from emitting CO2 into the atmosphere (largely
from burning coal, gas, and oil).
The companies who operate large data centers try to avoid this situation, for example by locating
the data centers in locations with cool weather conditions (like Finland), so that less energy is
needed for cooling. Or they locate data centers close to renewable energy production sites like
windparks or hydro-based power stations. But running a data center on renewable energy all the
time is still a huge challenge. We will get there, but it will take a long time.
The good news is that we as software engineers can help to accelerate this transition.
What can we do?

There are basically four fundamental things that we as software engineers can keep an eye on to
accelerate the transition to run all our software on 100% renewable energy all the time:
Delete workloads that are no longer used
Run workloads only when necessary
Move workloads to a low carbon location and time
Use fewer resources for your workload
Delete workloads that are no longer used

Sometimes we allocate resources at a data center for a certain workload, we deploy and run the
workload, and then, we forget that this workload exists, that the workload silently continues to
run, and blocks allocated resources from being used elsewhere. Studies have revealed that these
so-called “zombies” are a real problem. Jonathan Koomey and Jon Taylor revealed in their
analysis of real-world data centers (Zombie/Comatose Server Redux) that between 1/4 to 1/3 of
all running workloads are zombies: they are completely unused and non-active, but they block
allocated resources and therefore consume significant amounts of energy.
We need to clean up our data centers from these zombies. That alone could help reduce the
energy consumption significantly. Unfortunately, we don’t have the tools yet to automatically
identify zombie workloads in data centers or on public clouds. Beyond the fact that this is a huge
opportunity for new and innovative projects in this space, we need to help ourselves in the
meantime and manually identify those zombie workloads

The simple first step is, of course, to manually walk through all the running workloads to see if
we immediately see a workload that we forgot about and/or that doesn’t need to run anymore.
Sounds trivial? Maybe. But this usually surfaces surprisingly many zombie workloads already. So
doing this little annual (or monthly, or weekly) stock-taking and removing those unused
workloads already makes a difference..

In addition to that, we can use regular observability tools for this job and look at usage numbers.
The number of HTTP requests or the monitoring of the CPU activity are good examples of
metrics to manually look at for a period of time to see if a workload is really used or not.
Run workloads only when necessary

Another interesting outcome of the study mentioned above is that, beyond zombie workloads,
there is a large amount of workloads that are not being used most of the time. Their usage is not
at zero (like zombie workloads are), but at a very low frequency. The cohort that the study
discussed were workloads that were active for less than 5% of the time. Interestingly, this cohort
counted for roughly another 1/3 of all analysed workloads.
When looking at those workloads, we need to keep in mind that having those workloads
deployed and running consumes energy 100% of the time. The amount of energy that non-active
workloads consume is definitely less than the same workload being used at 100% (due to energy
saving technologies being applied at the microprocessor level, for example), but the total energy
consumption that is related to the workload is still significant (probably something around 50%
of the energy consumption when running under load). The ultimate goal here is to shutdown
those workloads entirely when they are not used.
This is something that software architects and software engineers need to take into account when
designing and writing software. The software needs to be able to startup quickly, on-demand, and
needs to be capable of running in many possibly very short cycles - instead of a more classical
server architecture that was built for server applications running for a very long time.
The immediate example that comes to mind are serverless architectures, allowing microservices to
startup fast and run only on demand. So this is nothing that we can easily apply to many existing
workloads right away, but we can keep this option in mind when writing or designing new or
refactoring existing software.
Move workloads to a low carbon location and time

One of the challenges of powering data centers with renewable energy is the fact that renewable
energy production is usually not at a constant level. The sun doesn’t shine all the time and the
wind doesn’t blow all the time with the same intensity. This is one of the reasons why it is so hard
to align the power consumption of data centers with the power produced from renewable sources.
Whether the data center produces renewable energy on-site or consumes energy from the grid
while purchasing green energy somewhere else doesn’t really make a big difference with regards
to this specific problem: each data center has different characteristics with regards to the energy
mix it consumes during the day.
Fortunately, we can help this situation by moving workloads around in two dimensions: space
and time. In case workloads need to run at a specific moment (or all the time), we can choose the
data center with the best energy mix available. Some cloud providers already allow some insights
into this, giving you an overview on the regions and their level of green energy. Others do not
(yet), but you should ask for it. This is important data that should influence the decision of where
to run workloads.
The second dimension here is time: renewable energy is not available at a constant level. There
are times when more renewable energy is available and can power all the workloads, whereas
there are other times when not enough green energy is around. If we can adjust the timing of
when we run the software

Keep this in mind when writing software and see if you can deploy your software in a way that
allows the data center to move it around within certain boundaries or conditions. It helps data
centers to adjust the load depending on the carbon intensity of the available power and therefore
reduce carbon emissions.
Use fewer resources for your workloads

The last chapter of these various efforts is to use as few resources as possible when running the
software. The rule of thumb for software engineers that I found during my studies for this
purpose is to “try to run your software with less hardware.” Most of the other, more detailed
suggestions and guiding principles can be derived from this simple rule of thumb.
Let’s assume you run your software in a containerized environment like Kubernetes. When
running the workload, you define the resource requirements for your workload, so that
kubernetes can find a place on a node of your cluster that has enough free space to schedule your
workload within the constraints you defined. Whether your software actually uses those defined
resources or not doesn’t really matter that much. The resources are reserved for your workload.
They consume energy - even if those resources are not used by your workload. Reducing the
resource requirements of your workload means to consume less energy and might even lead to
more workloads being able to run on the node, which - in the end - even means to have lower
hardware requirements for your cluster in total - and therefore less carbon emissions from
hardware production, hardware upgrades, cooling of the machines, and powering them with
energy.
Sometimes talking about using fewer resources for a workload sounds like talking about tiny
little bits and pieces that don’t change the game, that don’t move the needle in the overall picture.
But that is not true.
If we talk about small wattage numbers for memory or CPUs running in idle mode, those
numbers sum up pretty quickly. Think about how easy it is to scale your software. You can scale
it up to multiple, maybe hundreds or even thousands of instances running in the cloud. Your
wattage numbers increase in the same way. Don’t forget that. When we talk about saving 100
Watts of CPU consumption for your application because you can deploy it on an instance with
only four cores instead of six, it sounds small. But when we scale this application to 100 instances,
it means saving 100 Watts per instance * 100 instances = 10000 Watts. Suddenly that is a lot. If
we do this for every application that we run in the cloud or our own data center, energy
consumption gets reduced quite a bit.
But we need to change our mindset for this. Sometimes we find ourselves thinking in the opposite
direction: “Let's better give the application a bit more memory to make sure everything goes fine,
to make sure we have a buffer, just in case…” We need to rethink that and change our
perspective into the opposite direction. The question in our mind should be: “Can we run this
application with less memory?”, or “Can we run this application with less CPU?”, or both.
Defining and running realistic load tests in an automated way can help here. The environments
for those load tests can be defined with the new perspective in mind by reducing the available
resources step by step. Watching the resource consumption using regular profiling and
observability tools can surface the necessary data to find out when and why resource limits are hit
- and where we need to optimise the software to consume less.Unfortunately, we don’t have all
the tools yet to directly observe and measure the energy consumption of individual workloads or
the carbon emissions caused by the consumed energy.

- S U R F I N G R I A Z K H A N , 6 A

P A L E T T E O F I M A G I N A T I O N :
J O U R N E Y I N T O T H E A R T I S T I C

R E A L M

- S H A R A N Y A

- G O U T H A M - D H R U T H I

- L I K I T H A R

- V A R S H I N I J M

W O R K B Y V A R U N K I S H O R E

P I C T O R I A L T I M E C A P S U L E S :
R E F L E C T I N G O N P A S T E V E N T

C E L E B R A T I O N S

P A I N T I N G B Y M Y T H R I

I N A U G A R A T I O N O F
C O S M O S 2 2 - 2 3

I N A U G A R A T I O N O F A N V E S H A N A

V A L E D I C T O R Y O F A N V E S H A N A

S T U D E N T D E V E L O P M E N T P R O G R A M O N J A V A B Y D R .
J A L E S H K U M A R

E X P E R T T A L K O N P E R S O N A L I T Y D E V E L O P M E N T B Y R I T E S H
B H A T

